
CS297 Report
Total Recall for Ajax Applications

Smita Periyapatna
 smita.periyapatna@gmail.com

Advisor: Dr. Chris Pollett
Department of Computer Science

San José State University
Spring 2008

Table of Contents

1. INTRODUCTION 4

2. TECHNOLOGY INVOLVED 4

2.1. XUL 4
2.2. JAVASCRIPT 5

3. DELIVERABLE 1 – HELLO WORLD EXTENSION 5

3.1. CREATING DIRECTORY STRUCTURE 6
3.2. CREATING INSTALL.RDF 6
3.3. CREATING CHROME.MANIFEST 7
3.4. THE XUL FILE 7
3.5. TESTING EXTENSION 8

4. DELIVERABLE 2 – CAPTURE EVENTS 8

5. DELIVERABLE 3 – PREFERENCES 10

6. DELIVERABLE 4 – CACHING PAGES 11

6.1. RESOURCE DESCRIPTION FRAMEWORK 12

7. FUTURE WORK AND CONCLUSION 14

8. REFERENCES 15

List of Figures

FIGURE 1: SAMPLE EXTENSION 5

FIGURE 2: DIRECTORY STRUCTURE 6

FIGURE 3: INSTALL.RDF 7

FIGURE 4: CHROME.MANIFEST 7

FIGURE 5: XUL FILE 8

FIGURE 6: NEW TOOLBAR AND MENUBAR 9

FIGURE 7: ADDING NEW MENU ITEMS 9

FIGURE 8: CLIPPING TEXT 9

FIGURE 9: PREFERENCE XUL FILE 10

FIGURE 10: PREFERENCE DIALOG 11

FIGURE 11: CACHING BEGINS 12

FIGURE 12: BACK BUTTON 13

FIGURE 13: FORWARD BUTTON 14

1. Introduction

In AJAX, most of the action takes place inside a single page. When an AJAX
page is loaded, new instance of JavaScript objects are created. When you leave
that page and go to some other page like say Yahoo, the JavaScript objects are
completely wiped out. When you hit the back button, the page actually reloads
completely. All the objects are lost and this can be pain.

First, it is something that not all programmers are aware of, which can lead to
errors, so it is important to know about. Second, users see their state completely
wiped out; when they go back to their AJAX application with the back button, they
see the original state of their program, not the last place they left it. Third, this
can affect performance, since the AJAX application has to re-retrieve everything
from the server rather than use its local state.

My project aims to solve the above-mentioned problem. I propose to build an
extension for Mozilla Firefox browser, which extends the functionality of the
browser to save the states of an Ajax page in something similar to storing normal
history items. This will allow users to go back to the last place they left it, instead
of going to the original state of their AJAX application. It would also check if some
states were already saved in the history item, if they were, then those states
would not be saved. My extension will allow users to set a time interval at which
they want to save the states of a page.

This report describes the work that was accomplished so far in preparation for
CS298. The work in CS297 was submitted in the form of deliverables. The
deliverables helped in gathering relevant information and knowledge to
implement the final product. The remainder of the report talks about all the
deliverables in detail. The report concludes with the future work remaining to
implement the final product.

2. Technology Involved
For my extension, I have used eXtensible User Interface Language (XUL) for
creating widgets and written Javascript functions to bind user actions. XUL is a
XML grammar to add/modify user interface widgets of the browser. I have also
used mozilla’s XPCOM interfaces.

2.1. XUL

XUL is an xml based user interface markup language developed by Mozilla. XUL
provides a rich set of UI components. XUL can be used to build feature rich cross
platform applications. XUL also allows the use of existing web standards and
technologies like CSS, JavaScript and DOM.

2.2. Javascript

Javascript is a scripting language used mostly for client side web development. It
is the core scripting language in Mozilla. Javascript is used in various levels in
Mozilla. A user interface level which manipulates content through the DOM. A
client layer which calls on the services provided by XPCOM. An application layer
is available in which Javascript is used to create an XPCOM component.

3. Deliverable 1 – Hello World Extension

The first deliverable was to create a test extension to Firefox. I created a simple
extension by adding a new menu item to the existing menu, a new menu to the
menubar and displayed a string on the status bar panel. The following figure
shows a menu item "New History" added to the History menu. The menubar also
has a new menu "New Item" added. Also the status bar panel has string "Hello
World" displayed.

Figure 1: Sample Extension

Following are the steps to create a sample Firefox extension

3.1. Creating Directory Structure

Before writing the extension, it is necessary to have the right directory structure

Figure 2: Directory Structure

3.2. Creating install.rdf

Install.rdf is used to determine information about an extension as it is being
installed. It contains metadata identifying the extension, providing information
about who created it, version, etc. Following is the sample install.rdf file:

Figure 3: install.rdf

3.3. Creating chrome.manifest

The chrome.manifest tells Firefox the location of the chrome packages files and
overlays. Overlays attach other UI widgets to XUL documents at run time.
The chrome.manifest files also contains the location of the content directory
which has the XUL and JavaScript files, Skin which has the images and CSS
files and Locale which has the DTD and .properties files.

Following is the sample chrome.manifest file:

Figure 4: chrome.manifest

3.4. The XUL file

Following is the XUL file describes the menu items and string displayed on the
status bar panel.

<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:em="http://www.mozilla.org/2004/em-rdf#">
 <Description about="urn:mozilla:install-manifest">
 <!-- Required Items -->
 <em:id>test@mail.com</em:id>
 <em:version>1.0</em:version>
 <em:targetApplication>
 <Description>
 <em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
 <em:minVersion>1.5</em:minVersion>
 <em:maxVersion>2.0.0.*</em:maxVersion>
 </Description>
 </em:targetApplication>
 <!-- Optional Items -->
 <em:creator>Tester</em:creator>
 <em:description>a sample extension. </em:description>
 <em:homepageURL>http://www.mozilla.org/</em:homepageURL>
 <em:iconURL>chrome://sample/skin/images/pic.jpg</em:iconURL>
 <em:optionsURL>chrome://sample/content/prefSample.xul</em:optionsURL>
 </Description>
</RDF>

content sample chrome/content/
overlay chrome://browser/content/browser.xul chrome://sample/content/sample.xul
style chrome://global/content/customizeToolbar.xul chrome://sample/skin/test.css
skin sample classic/1.0 chrome/skin/

Figure 5: XUL File

3.5. Testing extension

Create a text file and put the path of your extension folder. Save the file with the
id of the extension given in your install.rdf file. Save the file in your Profile
directory. Start Firefox.

4. Deliverable 2 – Capture Events

The second deliverable was about capturing various events generated by mouse
clicks. Following figure shows three new menus, “New Menu”, “Clipped Items”
and “MenuOnFly”.

It also shows a new icon, “Add Bookmark”, added to the toolbar. Clicking on this
icon will display the dialog box, which gets displayed when “Bookmark This
Page…” menu item under “Bookmarks” menu is clicked.

<?xml version = "1.0"?>
<overlay id = "sample" xmlns = "http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

<!--This displays the "hello world" string on the status bar panel-->
<statusbar id = "status-bar">
 <statusbarpanel id = "my-panel" label = "Hello World"/>
</statusbar>

<!--This creates the new menu "New Item"-->
<menubar id = "main-menubar">
 <menu id = "new-menu">
 <menuitem label = "New Item"/>
 <menupopup id = "new-item">
 <menuitem label = "Add Item" />
 <menuitem label = "Clip Item" />
 </menupopup>
 </menu>
</menubar>

<!--This creates the menu item "New History" under History menu -->
<menupopup id = "goPopup">
 <menuitem label = "New History"/>
</menupopup>

</overlay>

Figure 6: New Toolbar and Menubar

Clicking on the “Add Menu Item” menu item will add a new menu item under
“MenuOnFly” menu. Clicking on the “menuitem1” will generate an alert box.

Figure 7: Adding New Menu Items

Similarly highlighting text on the web page and selecting the “Clip Item” menu will
clip the text and add it as menu item under “Clipped Items” menu. Selecting the
menu item under “Clipped Items” will allow you to copy and paste that text in any
editor.

Figure 8: Clipping Text

5. Deliverable 3 – Preferences

The third deliverable was intended to create a preference system. A preference
is any value or defined behavior that can be set by the user. Preference changes
via user interface, usually a preference dialog, takes effect immediately. Figure 9
shows the preference file used to create the preference dialog. The figure below
that shows the preference dialog. The path to the preference XUL file should be
given in the install.manifest file.

This deliverable will allow users to cache pages according to the time interval set
by them. After the time interval lapses, the page is cache. Deliverable 4 explains
how pages are cached.

Figure 9: Preference XUL File

<?xml version = "1.0"?>
<?xml-stylesheet href = "chrome://global/skin/" type = "text/css"?>
<prefwindow id = "myExtensionOptions" type = "prefwindow"

xmlns = "http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
buttons = "accept, cancel" title = "My Options">

 <prefpane id = "myPane" flex = "1" >
 <preferences id = "tabsPreferences">
 <preference id = "extensions.my_extension.myOptions"
 name = "extensions.my_extension.myOptions" type = "int"/>
 </preferences>
 <script type = "application/x-javascript" src = "chrome://sample/content/pref.js"/>
 <radiogroup id = "myOpt" preference = "extensions.my_extension.myOptions">
 <radio label = "Three sec" value = "2" />
 <radio label = "Five sec" value = "3"/>
 <radio label = "Ten sec" value = "4"/>
 </radiogroup>
 </prefpane>
</prefwindow>

Figure 10: Preference Dialog

When the user selects any option, an observer receives the change notifications
and a callback function then executes so that the changes takes effect
immediately.

XPCOM interface, nsIPrefService, is used for implementing the preference
system.

6. Deliverable 4 – Caching Pages

The fourth deliverable was about caching pages according to the user selected
preference. The following figure shows two new icons in the toolbar that serves
as back and forward buttons to view the cached pages.

The below three figures are from netflix website, where in users can browse
movies of different genre.

In figure 11, observe that the details about a particular movie are displayed, as a
tool tip only when the user moves the mouse on that movie image/poster. This
state (tool tip) of the page is never stored as a history item, when users are
browsing that page.

With the help of my extension, these states can be cached. Figure 12 and 13
shows those states of the page loaded from cache, when the user clicks the
cacheBackButton and cacheForwardButton respectively.

Figure 11: Caching Begins

For this delieverable, the page’s DOM tree is captured using the body.innerHTML
property, which is then written to the disk. The URL of the page is used as a key
for writing to and reading from the cache. The URL is appended with the
timestamp at which the page is cached, before writing to the cache. I used RDF
as an intermediate API between the user interface and cache API.

6.1. Resource Description Framework

Resource Description Framework (RDF) is a simple, cross-platform database for
small data stores. Bookmarks, global history in mozilla use RDF. Before writing
to cache, the content, the URL and the title are stored as RDF resources. Before
writing any new content to the cache the content is compared with all the
previously written content to check if it is equal. This is done with the help of
RDF.

When the content is cached a new menu item is added to the cacheBackButton,
with the title of the page as its label. When the cacheBackButton is clicked the
most recent menu item gets appended to the cacheForwardButton menu while it
gets deleted from the cacheBackButton menu.

When the cacheBackButton is clicked the document content is loaded from the
cache. The following figure shows the button clicked and the page that was
cached few seconds back gets displayed. Also the URL in the address bar shows
the URL appended with the time stamp, the time at which the page was cached.

Figure 12: Back Button

When the cacheForwardButton is clicked the document content is loaded from
the cache. The following figure shows the forward button clicked and the page
that was cached few seconds back gets displayed. Also the URL in the address
bar shows the URL appended with the time stamp, the time at which the page
was cached.

Figure 13: Forward Button

XPCOM interfaces like nsICacheService and nsIRDFDataSource were used for
implementing writing to and reading from the cache and RDF respectively.

7. Future Work and Conclusion
In CS298, I will extend deliverable four to tabbed browser. This will involve
capturing the tab open event and tab close event. This feature will work in a way
similar to the way the Back/Forward controls work, with tabbed browser. Also,
caching will be done for pages which are implemented using flash, frames etc.

More information has to be gathered on how to capture the changing state of the
pages which are implemented using flash.

CS298 will also involve improving and integrating deliverable 3 and 4 only, as
deliverable 1 and deliverable 2 was done to know the steps involved in writing an
extension to Mozilla. Most of the groundwork for implementing the final project is
laid in the form of deliverable 4. This deliverable has couple of things to fix, like
when the cacheBackButton/cacheForwardButton controls are used, the pages
that are loaded from cache do not display images sometimes. This will be fixed in
CS298.

The work done in this semester in the form of deliverables will definitely help in
implementing the final project.

8. References

[1] Official page of Mozilla.
“http://developer.mozilla.org/en/docs/Building_an_Extension"

[2] Creating Applications with Mozilla. David Boswell. O'Reilly. 2002.

[3] XUL Tutorial and XPCOM Reference.
“http://www.xulplanet.com/”

[4] JavaScript Reference.
“http://www.w3schools.com/jsref/default.asp”

[5] RDF reference
“http://developer.mozilla.org/en/docs/RDF_in_Fifty_Words_or_Less”

